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A PROCEDURE. FOR SPRAYING SPRUCE ·BUDWOI~NS 
IN r~AINE DURING -STABL-E IHND CONDITIONS 

Monte Glovinsky 
I~SFO Boston, Massachusetts 

ABSTRACT. A technique· ·is develllPE!~ ·t.o forecast 
winds and appJy them fer spraying "in-wind" beyond 
the morning· inversion ·period but. b~fore advers.e 
thermal activity begins. Nomograms are. constructed 
which determine· drift distances of all drop size 
categories within the· spray· c·loud for a given pres­
sure gradient.~ -wiAd- to· bloGk di-rection component, 
and aircraft type~· lhis•gives an estimate of the 
proper offset of. planned-flight· runs and of spray 
deposition. 

1. INTRODUCTION 

A sudden increase in spruce budworm population from 1971 to 1979 has 
posed an extremely serious threat· to· one of Maine's most valuable re­
sources, its spruce and fir trees. These· insects are mosi;destructive 
in their larval stages, when they consume· the needles of the trees. 
Repeated feedings cause the trees to die. The spraying strategy is 
simply to deposit a poisonous chemical on the needles during the feed­
ing stages (normally a two-week span within the period between late 
r1ay and mid-June). 

During selected years since 1954; the spraying for spruce budworms 
in Maine was confined to. the fair weather inversion periods of the day­
light hours (usually between 5· am:i-8' a.m., and 6 and 8 p.m.). The very 
stable and calm. wind conditions allowed for fairly accurate chemical 
deposition of spray droplets, especially those larger than 150 microns 
in diameter. However, by not trying tc:r spray "i·n-,wintl", during those 
stable* hours beyond the marning· inversion; available ,spray time was . 
severely limited~ ... : This was· espec;:ially true when the r'¢latively short 
feeding period eaim::ided with· a string of early mornings plagued with 
fog and low douds· or: when· inversien- frequency was· we'll \below normal. 
Also, it has beerFneted·, maRy-dreplets smaller than 100.1\licrons, at 
tim~s. remained sllspended througheut much of the inversidn period, and 
had drifted. far frem the target· area by the time the invetsion had 
brok~. ' 

According to De r1arrais, et al. (1968), aerosol's released within 150 
feet of. the forest canopy with winds up to 12 mph, would not exp~rience 
excessive scattering. The marked vertical mixing due to mechanica,l 
turbulence wollld "readily mix the spray cloud into the tree crowns .• " 
Winds, however, ·would cause· drifting of the spray. This paper des­
cribes a technique te forecast-drift level winds and determines the 
.spray drift so flight 1 i nes may be offset properly. 

*Spraying when the atmosphere is neutral or unstable subjects the spray 
to adverse thermal activity causing unacceptable deposition. 

- 1 -
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2. DRIFT HIND LEVELS 

Wind forecasts are applied to two levels between the release height and 
tree tops. 

The first level, level 1, is halfway between the aircraft and the bot­
tor.J of the downward propeller and· wing· tip· vortex· system. According to 
Jones (1970), photographs of spray- clouds show that spray droplets are 
quickly swept into this vortex· system and sink at a relatively rapid rate. 
The descent stops when the centers· of· the·- individual vortices within the 
syster.1 reach to about 1/2·wingspan·above the surface. See Figure 1. 

I 

The second level, level 2, is halfway between the bottom of the vortex 
system and the tree tops. b ' 

(H-zl 
Therefore: Level 1 = h + ~ + - 2- = h + ~ + ~ (AGL)* (1) 

*Above Ground 

and Level 2 = 

Level 

h + ~ 
4 (AGL) 

where: h = effective height of tree canopy 

H =flight altitude above tree canopy 

b = wing span of aircraft 

(2) 

The development described is for C54 aircraft using SEVItl 4 oil. This 
was the combination for about 80% of the spraying in r~aine in 1979 (a 3-
mi 11 ion- acre proj eet). The same proeedure is fo11 owed to prepare. work­
ing models for the other aircraft (and SEVIN 4 oil) used in r1aine bud­
worm spraying. The recommended flight a 1 titudes are· 150 feet· .abov.e the 
tree tops during erosswind component situations (winds blowing within 
45 degrees of perpendicular to the preplanned flight lines) and 250 feet 
above the trees during "along-wind" periods (winds within 45 degrees of 
para 11 el to the flight 1 i nes). The 100-foot increase in altitude _fcir. 
along-wind conditions results· in a eorresponding increase of horizontal 
deposition. This compensates· for the lack of swath coverage observed 
during inversions with planes operating at 150 feet above the trees. 

The average tree height was assumed-to· be 70 feet, and the wing span 
for C54 is 114 feet. So, for C54 operations, solving equations (1) and 
(2): 

During crosswind periods (subscript C): 

Level lc - 175 feet AGL 

and Level 2c -·100 feet AGL 

During alorig-wind periods (subscript A): 

Level lA - 225 feet AGL 

and Level 2A = Level 2c - 100 feet AGL 
- 2 -
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-20 SEC 

-WIND 

---..-==~---- 40 SEC 

--60 SEC 

CROSSWIND 

Figure 1. Descent and spreading of wing-tip vorticies from the 
aircraft in still air and in a light crosswind. The symbol 
b stands for aircraft wingspan. (From Boyle,Barry et al 1975) 
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.3. GEOSTROPHIC WIND. 
. . 

It was determined that wind .forecasts shouj£1~ee·-expressed. as .. a percentage 
of the geostrephit>: wind~ In£1ividua·l~anemametel'(.site readings not.ooly pose 
the prob 1 ems•- af4at>al ized:-effeets·; -,but:• a lsa'•do net .• aormalJy give average 
wind conditieRs fer·,large:,eneugh· areas:.(:the=average spray f>],ock in Maine, 
in 1979, was about 30,000· acres.)~ .·furthermore, ·a be1:ter average of wind 
variation with time-.can be: determined-.- (This is also true. for wind compon­
ents within the National Fire Danger- Rating System.) 

The pressure gradient·{PG),·can· be expressed by: 
/). . 

PG = . p 
T 

where b.p is the pressure difference in millibars between 2 points, one on 
each side of the spray-area on an axis normal to the gereral wind flow, 
and, L is the d.istance between the two points in degrees latitude. These 
va 1 ues can be readily determined from carefully analYzed weather maps using 
any map scale. ·Conversion of pressure .:.~r<!dient in these units to gee­
strophic wind (Vg) in miles per hour is shown in the first columns of 
Table 1. These values were-developed using the graphical aids by N. A. 
Ri 1 ey and presented by Byers ( 1937). 

o o· ,• 
o. 1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

. 1.0 
1.1 
1.2 
1.3 

- 1.4 
. 1.5 

1.6 
1.7 

' 1.8 
1.9 
2.0 

0.0 
1.1 
3.6 
5.0 
6.7 
8.4 

. 10.1 
11.8 
13.4:. 
15.1 
16.8 
18.5 
20.1 
21.8 
23.5 
25.2 
26.8 
28.5 
30.2 
31.9 
33.6 

Table 1 
50% (Vg) 
· Vl • 

. 11P . 
0.0 
0.6 
1.7 
2.5 
3.4 
4.2 
5.1 
5.9 
6.7 
7.6 
8.4 
9.3 

10.1 
10.9 
ll.8 
12.6 
13.4 
14.3 
15.1 
16.0 
16.8 

o.o 
1.3 
2.8 
3.7 
5.0 
6.2 
7.4 . 
8.7:: 
9.9' :· 

ll.2 . 
12.4 : 
13.6 :· 
14.8 : 
16.0 •• 
17.3 : . 
18.5 •. 
19.7 •· 
21.0 
22.2 . 
23.5 
24.7 

0.0 
0.5 
1.5 
2.2 
2.9 
3.6 
4.3 
5.1 
5.8 
6.5 
7.2 

.8.0 
8.6 
9.4 

10.1 
10.8 
ll.5 
12.3 
13.0 
18.7 
14.5 

0.0 
0.7 
2.1 
3.2 
4.2 
5.2 
6.4 
7.5 
8.5 
9.5 

10.6 
ll. 7 
12:7 
13.8 
14.9 
15.9 
16.9 
18.0 
19.1 
20.1 
21.2 

53% (Vg) 
VlA 

I-1PH rt. /Sec • 
0.0 
0.6 
1.8 
2.6 
3.6' 
4.4 
5.3 
6.2 
7.1 
8.0 
8.9 
9.8 

10.6 
ll.5 
12.5 
13.4 
14.2 
15.1 
16.0 
16.9 
17.8 

0.0 
0.9 
2.6 
3.9 
5.2 
6.5 
7.9 
9.2 

10.4 
11.8 
13.1 
14.4 
15.7 
.17 .0 
18.3 
19.6 
20.9 
22.2 
23.5 
24.9 
26.2 

Conversion of pressure gradient (P.G.) to geostrophic wind (MPH) and to 
drift level winds (MPH) and Ft./Sec.). 
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4. DRIFT LEVEL \HNDS 

A generally accepted way to express·the'variation of wind speed with 
height is the general power law (as presented by Touma (1977): 

where: Vu =wind speed· at upper level Zu 

VL =wind speed at lower level ZL 

P = expotential parameter (0 2._ ~ 2._ 1) 

(3) 

According to Touma the· values of· P·for hilly terrain similar to Northern 
Maine at various· stabi.lity classes· (as defined by Pasquill, 1961) are 
shown in Table 2. 

Stabi 1 ity Class 
A Very unstable 

Table 2 

B t4oderate ly unstable 
C Slightly unstable 
D Neutral 
E Slightly stable 
F t4oderately stable 
G Very stable 

p 

• 109 
.085 
.078 
.116 
• 261 
.426 
• 516 

Values of P for stability classes from Michigan data 1975-1976 by Touma. 

By assuming 2500 feet (AGL) is about the level of the geostrophic wind, 
Vg, (Pettersen 1958), we can find an expression for the winds at the vari-
ous lower levels. Substituting equation (3) for the C54 operation: ' 

Vlc = (l~:3 ) .P at 175 feet AGL 

V2(C*A) = (~~)P at 100 feet AGL 

VlA = m:n-P at 225 feet AGL 

where: Vlc = wind at level lc 

V2(C*A) = wind at level 2 (C or A) 

VlA = wind at level lA 

- 5 -
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.) 
In Northern Maine, during the spray· season, stability class E (p = .261) 

best describes the conditions .beyond·the'morni~i(inversion period and be­
fore adverse thermal activity takes place. 

Solving equations 4, 5, and 6 using p = .261 we get: 

Vlc ':' 50% Vg 

V2(C*A) = 43% 

VlA = 53% Vg 

These percentages were used to complete the last columns of Table 1. 

Note: Since all spray aircraft are assigned the same flight altitudes, 
the. percent of geostrophic wind· used' at· the· other aircraft drift levels 
was the same as the C54 operation·.· Separate· computations were considered 
unnecessary when also co·nsidering· the· state· of the art· and the degree of 
accuracy associated with some·of·the·basic assumptions. 

5. DRIFT DISTANCES 

In a dispersion model developed by Cramer, et al., and described by 
Dumbald, Rafferty and Cramer· (1976); the axis of the spray cloud is as­
sumed to intersect the ground at· a· downwind' distance, D, proportional to 
the product of the effective· re~ease height·, Z> and· the mean cloud trans­
port wind,' V, divided by the· settling ve·locity, K. Therefore: 

) D = .·zv- (7) 
K 

) 

We substitute the vertical fall distance for Z for.each of the two set­
tling systems between the aircraft height and the tree tops and get an 
expression for the drift distance of each· system. Adding the two dis­
tances gives the total drift. 

A. Drift of the Vortex System 

That portion of the total drift covered· during the descent of the vortex 
system can be expressed (from equation 7) by: 

(
H" .Q., 

Dl =fin (8) 

where H is aircraft. height above trees 
b is wing span of aircraft 
V1 is average wind speed of this system 
R'is sink rate of the vortex system 

For C54 operation from equation 8: 

93Vlc 
Dlc= R (H =150ft. b =114ft •••• crosswind) 

- 6 -
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and 

193 VlA 
DlA = R (H =250ft. b =114ft •••• along wind) 

Jones, after Prandtl and Tietjens (1934) estimate R, the sink rate as: 

R = 8gW 
rr3pb2S 

where: g = gravitational acceleration (9.8 m/sec.2) 
W = weight of aircraft (grams) 
p = air density (1207.4 gmjm3) 
S = aircraft speed (m/sec.) · · 
b = wing span (meters) 

(1 0) 

( 11) 

Table 3 shows the specifications of the various aircraft used for the Maine 
spraying operations. 

Table 3 
AIRCRAFT WEIGHT (W), WING SPAN (b), SINK RATE (R), SPEED (S) AND SWATH (SW) 

Aircraft w (grams) 
b S R* SW 

(meters) (m/sec.) (m/sec.) (meters) 
C54 
PV-2 
TBM 

2.163604 X 107 
1 • 121832 X 1 0 
6.824638 X 106 

34.62 80.46 .47 366 

For C54, from equation (11): 

23.77 
16.46 

R = .47 m/sec. or 1.55 ft./sec. 

80.46 
73.76 

.56 

.72 
183 
122 

(*solving Eq. 11) 

and the drift distance of the vortex system in feet--for crosswind period is: 

Dlc. = 60 (Vlc) (when Vlc is in ft./sec.) 

and for along-wind periods: 

DlA = 125 (VlA) 

(from 9 and 10, respectively) 

B. Drift of the Lower System 

That portion of the drift distance covered between the bottom of the vor­
tex system and the tree tops can be expressed by: 

~ (V2) 
D2 = =,;-­

Gi 

- 7 -
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where b = wing span 
V2 = average wind of this stratum 

. Gi··= gravitational settling velocity of each drop size category 

In a dispersion model developed by Dumbald and Bjorklin {1977}, values of 
gravitational settling veloCities, Gi, and fraction of total source, Fi, 
fo.r 13 to 15 drop size categories were estimated for the Various aircraft 
(with SEVIN 4 oil) used in Maine. These are shown in Table 4. 

The term{~~n equation 12 is the time it takes for each drop size category 
to desceno 1through the lower system. This is referred ·to as Ti in Table 4.* 
It is in seconds when Gi is in ft./sec., b is in feet, and V2 is fn ft./sec. 
Then: D2 = Ti V2 

Drop 
Size 
Cate-
!.lOrY i 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
where: 

Table 4 

C54 PV-2 
Drop 

TBM Size 
-

Gi Fi 
-

Gi Fi 
-

Gi Fi Cate-u Ti u Ti u ti gory i 
231 2.709 .008 21 277 3,16 .016 12 221 2. 50 .02 11 1 
220 2.567 .006 22 252 2.86 .009 14 1781.86 .03 15 2 
207 2.412 .010 23 231 2.61 .010 15 152 L54 .05 18 3 
194 2.211 .010 25 220 2.48 .022 16 139 1 • 28 0 1 0 21 4 
180 1.977 .035. 28 :207 2.33 .048 17 123 1.05 .10 26 5 
166 1.742 .075 32 194 2.12 .051 18 112 .90 .10 30 6 
151 1.521 0113 38 180 1.90 .093 21 99 • 77 .20 35 7 
135 1 • 277 0165 45 166 1.67 .084 23 86 • 66 0 10 41 8 
117 1.010 0176 57 152 1. 46 0121 27 77 • 57 • 1 0 47 9 

93 .789 .204 72 135 1. 22 0170 32 66 • 42 • 10 64 10 
76 • 591 0153 96 117 0 97 0131 40 55 .29 .05 93 11 
51 .257 .040 222 98 .76 0126 51 46 .20 .03 135 12 
21 .046 .005 1239 77 .57 .084 68 31 •. 10 .02 270 13 

. 51 .25 .035 156 
30 010 .001 390 

u is mean drop diameter in each ith category (urn) 
Gi is gravitational settling velocity in each ith category (ft./sec.) 

. Fi is fraction of total source in each ith category 
Ti is time of suspension of each ith category 

c. Total Drift 

Adding the drift of the vortex system (found in a) to the lower system 
(found in b) gives the total drift. For C54 operation: 

De = Dlc + D2 = 60 Vlc + Ti V2 (crosswind) 

*These Ti values are in good agreement with computations by Van Liere and 
Barry (1973) for particles of specific gravity 1.0 falling 50 feet in · 
still air at an air temperature of 23 degrees celsius. 

- 8 -
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and 

DA· = DlA + D2 = 125 VlA + 'i V2 (along-wind) 

and since: Vlc = .50 Vg; VlA = .53 Vg and V2 = .43 Vg, then: 

V2 = .86 Vlc = .81 VlA 

For C54: 

D(; ='Vlc (60 + .86 'i) ••• tqtal crosswind drift ••• 

DA = VlA (125 + .81 'i) ••• total along-wind draft ••• 

For PV2: 

De = Vlc (61 + .86 'i) 

OA = VlA (115 + .81 'i) 

For TBM: 

De = v1 c (52 + • 86 , i ) 

DA = VlA (94 + .81 'i) 

(13) 

(14) 

( 15) 

( 16) 

(17) 

( 18) 

Solving equations 13 through 18 using the data in Table 4, 2 nomograms are 
constructed for each aircraft (Figures 2, 3, 4, 5, 6, and 7) that show 
drift distances of each drop size category for crosswind and along-wind 
components as a function of pressure gradient (and corresponding Vlc, VlA 
combination). Although these nomograms are based on the mathematical 
models of Dumbald and Bjorklund, the C54 charts are in good agreement with 
the observed data of Boyle, Barry, et al. (1975) using the similar DC-7B 
aircraft. 

6. OFFSET PROCEDURE 

With a given pressure gradient'and wind to block component, an estimate 
of the downwind distance of each drop size category can be determined from 
either of the two nomograms of each aircraft. The offset is applied to the 
preplanned flight lines to determine the actual flight. Normally for cross­
wind periods, the offset distances will correspond to the center lines shown 
on the nomograms of Figures 2, 4, and 6. These.are 112· swath width downwind 
of the largest diameter drop size category. 

Each end point of a preplanned flight line is offset into the wind at the 
indicated distance. The variation of spray deposition across the entire 
swath is also indicated (including the degree of overlap or spillage into 
unplanned areas). The maximum deposition category (maximum Fi) is the heavy 
line on each crosswind nomogram. The deposition spectrum across the swath 
lies between the front edge and end lines. The dashed lines on the cross­
wind charts are . /2 x swath and /2 x swath downwind from the front edge 1 ine. 

) 2 . 
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These represent the center and end lines of the spectrum of deposition 
across the swath when winds are at a 45-degree angle to the spray block. 
Offset distances for winds intersecting the blocks between 90 and 45 de­
grees can be interpolated between these two center lines. Of course, 
when winds are at 45 degrees to the block, gaps in coverage, as well as 
overspillage must be realized, as shown in Figure 8. 

Figure 8 

\ 
OR 

~ 
WIND 

\ 

~/2xSWAT~ 
.,/"" 

WIND 
\ \ 

These situations may require rescheduling or·reassignment of operations. 

The crosswind nomograms can also indicate a deficiency of deposition if 
winds are too light. For instance, if drop sizes of less than 50 microns 
are regarded as ineffective, wind speeds at the drift level of at least 
4 .l/2 mph would be n·eeded to cover the entire block with the desirable depo­
sition (if C54's are operating while winds are crossing the blocks at a 
90-degree angle). 

The offset for along wind spraying would correspond to the distance of 
the first (largest) size category when the blocks are downwind, and to the 
smallest effect size category when the blocks are upwind. To· offset the 
shutoff points in .these cases, the distances would be reverse, i.e., the 
smallest category. for downwind flight runs and the largest for upwind runs. 
The path of the .air~raft during along wind periods would be on the same 
lines of the preplanned lines, putting the maximum deposition through the 
center of the blocks. · 

7. SUMMARY AND CONCLUSION 

Since 1954, spraying for spruce budworms in Maine was confined to the 
fair weather inversion periods of the daylight hours. This often severely 
limited the time available for spraying so a procedure is developed whereby 
spraying might continue during the stable hours beyond the morning inversion. 
It allows for spraying in-wind by determining spray drift and, therefore, 
proper offsetting of flight lines. 

To compute the total spray drift, the drift of two layers between the air­
craft and tree tops are tallied. The upper layer covers the vertical dis­
tance of the downward propeller and wing tip vortex system. ·The lower part 
comprises the remaining space to the tree tops and has been shown to be 
equal to about 1/2 wing span in size. 

-· 10 -
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The top of the upper level, the aircraft altitude, is dependent_upon 
the wind to block directional component •. During crosswind periods air-. 
craft are assigned an altitude of 150 feet above the tree tops. During 
along-wind periods, 250 feet above the· trees is the recommended altitude. 
The winds at the midpoint of each segment (drift level winds) are devel­
oped from pressure gradient and the corresponding percentages of gee­
strophic wind. 

The dr.tft of the upper segment is a function of: 

1. Its vertical distance 
2. Its drift level wind, and 
3. The reciprocal of the sink rate of the vortex system. 

The drift of the lower segment is a function of: 

1. Its vertical distance (1/2 wing span in size) 
2. Its drift level wind, and 
3. The reciprocal of the gravitational settling velocity of each 

drop size category within the spray cloud. 

This results in a pattern of spray deposition in which smaller droplets 
are carried farther downwind than larger ones. 

Using nomograms, for a given aircraft, wind to block component, and 
pressure gradient, one can readily obtain the drift distances of all drop 
size categories and, therefore, an estimate of spray deposition and 
proper offset. 
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FIGURE 3 C54 ALONG WIND 
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FIGURE4 PV-2 CROSSWIND 600 FOOT SWATH 
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FIGURE 7 TBM ALONG WIND 
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