NOAA Technical Memorandum NWS ER-65

A PROCEDURE FOR SPRAYING SPRUCE BUDWORMS
IN MAINE DURING STABLE WIND CONDITIONS

Scientific Services Division Eastern Regian Headquarters May 1980

U.S. DEPARTMENT OF COMMERCE

The National Weather Service Eastern Region (ER) Subseries provides an informal medium for the documentation and quick dissemination of results not priate, or not yet ready for formal publications. The series is used to report on work in progress, to describe technical procedures and practices, to relate progress to a limited audience. These Technical Memoranda will report on investigations devoted primarily-to regional and local problems of interest mainly to ER personnel, and hence will not be widely distributed.
Papers 1 to 22 are in the former series, ESSA Technical Memoranda, Eastern Region Technical Memoranda (ERTM); papers 23 to 37 are in the former series, ESSA Technical Memoranda, Weather Bureau Technical Memoranda (WBTM). Beginning with 38, the papers are now part of the series, NOAA Technical Memoranda NWS.

Papers 1 to 22 are available from the National Weather Service Eastern Region, Scientific Services Division, 585 Stewart Avenue, Garden City, N.Y. 11530. Beginning with 23, the papers are available from the National Technical Information Service, U.S. Department of Commerce, Sills Bldg., 5285 Port Royal Road, Springfield, Va. 22151. Prices varyfor paper copy; $\$ 2,25$ microfiche. Order by accession number shown in parentheses at end of each entry.

ESSA Technical Memoranda

Local Uses of Vorticity Prognoses in Weather Prediction. Carlos R. Dunn April 1965 Application of the Barotropic Vorticity Prognostic Field to the Surface Forecast Problem. Silvio G. Simplicio. July 1965 A Technique for Deriving an Objective Precipitation Forecast Scheme for Columbus, Ohio. Robert Kuessner. September 1965
Stepwise Procedures for Developing Objective Aids for Forecasting the Probability of Precipitation. Carios R. Dunn. November 1965
5. A Comparative Verification of 300 mb . Winds and Temperatures Based on NMC Computer Products Before and After Manual Processing. Silvio G. Simplicio. March 1966
Evaluation of OFDEV Technical Note No. 17. Richard M. DeAngel is. March 1966
Verification of Probability of Forecasts at Hartford, Connecticut, for the Period 1963-1965. Robert B. Wassall. March 1966
Forest-Fire Pollution Episode in West Virginia November 8-12, 1964. Robert 0. Weedfall. April 1966
The Utilization of Radar in Meso-Scale Synoptic Analysis and Forecasting. Jerry D. Hili. March 1966
Preliminary Evaluation of Probability of Precipitation Experiment. Carlos R. Dunn. May 1966
11 Final Report. A Comparative Verification of 300 mb . Winds and Temperatures Based on NMC Computer Products Before and After Manual Processing. Silvio G. Simplicio. May 1966
Summary of Scientific Services Division Development Work in Sub-Synoptic Scale Analysis and Prediction - Fiscal Year 1966. Fred L. Zuckerberg.
A Survey of the Role of Non-Adiabatic Heating and Cooling in Relation of the Development of Mid-Latitude Synoptic Systems. Constantine Zois. July 1966
The Foreca
ERTM 14 The Forecasting of Extratropical Onshore Gales at the Virginia Capes. Glen V. Sachse. August 1966
ERTM 15 Solar Radiation and Clover Temperatures. Alex J. Kish. September 1966
ERTM 16 The Effects of Dams, Reservoirs and Levees on River Forecasting. Richard M. Greening. September 1966
ERTM 17 Use of Reflectivity Measurements and Reflectivity Profiles for Determining Severe Stormis. Robert E. Hamilton. October 1966
ERTM
Procedure for Developing a Nomograph for Use in Forecasting Phenological Events from Growing Degree Days. John C. Purvis and Milton Brown. December 1966
ERTM 19 Snowfall Statistics for Williamsport, Pa. Jack Hummel. January 1967
ERTM 20 Forecasting Maturity Date of Snap Beans in South Carolina. Alex J. Kish. March 1967
ERTM 21 New England Coastal Fog. Richard Fay. April 1967
ERTM 22 Rainfall Probability at Five Stations Near Pickens, South Carolina, 1957-1963. John C. Purvis. April 1967
WBTM ER 2 A Study of the Effect of Sea Surface Temperature on the Areal Distribution of Radar Detected Precipitation Over the South Carolina Coastal

Waters. Edward Paquet. June 1967 (PB-180-612)

WBTM ER 2
WBTM ER 2
WBTM ER 26
WBTM ER 28
WBTM ER 2
WBTM ER 30
BTM ER 31
WBTM ER 33
TBTM ER 34 December 1968 (COM-71-00194) HTM ER 34 A Review of Use of Radar in Detection of Tornadoes and Hail. R.E. Hamilton. December 1969 (PB-188-315)
UBTM ER 36 Objective Forecasts of Precipitation Using PE Model Output. Stanley E. Wasserman. July 1970 (PB-193-378)
WBTM ER 37
An Example of Radar as a Tool in Forecasting Tidal Flooding. Edward P. Johnson. August 1967 (PB-180-613)
Average Mixing Depths and Transport Wind Speeds over Eastern United States in 1965. Marvin E. Miller. August 1967 (PB-180-614) The Sleet Bright Band. Donald Marier. October 1967 (PB-180-615)
A Study of Areas of Maximun Echo Tops in the Washington, D.C. Area During the Spring and Fall Months. Marie D. Fellechner. April 1968 (PB-179-339)
Washington Metopolitan Area Precipitation and Temperature Patterns. C.A. Woollum and N.L. Canfield. June 1968 (PB-179-340)
Cl imatological Regime of Rainfall Associated with Hurricanes after Landfall. Robert W. Schoner. June 1968 (PB-179-341) Monthly Precipitation - Amount Probabilities for Selected Stations in Virginia. M.H. Bailey. June 1968 (PB-179-342) A Study of the Areal Distribution of Radar Detected Precipitation at Charleston, S.C. S.K. Parrish and M.A. Lopez. October 1968 (PB-180-480) The Meteorological and Hydrological Aspects of the May 1968 New Jersey Floods. Albert S. Kachic and William Long. February 1969 (Revised July 1970) (PB-194-222) A Climatology of Weather that Affects Prescribed Burning Operations at Columbia, South Carolina. S.E. Wasserman and J.D. Kanupp. Objective Mesoscale Temperature Forecasts. Joseph P. Sobel. September 1970 (COM-71-0074)

NOAA Technical Memoranda NWS

NWS ER 38 Use of Primitive Equation Model Output to Forecast Winter Precipitation in the Northeast Coastal Sections of the United States. Stanley E. Wasserman and Harvey Rosenblum. December 1970 (COM-71-00138)
$\begin{array}{ll}\text { NWS } & \text { ER } 40 \\ \text { NWS } & \text { ER } 41\end{array}$ (COM-71-00204)

NWS ER 42 A Case Study of Radar Determined Rainfall as Compared to Rain Gage Measurements. Martin Ross. July 1971 (COM-71-00897)
NWS ER 43 Snow Squalls in the Lee of Lake Erie and Lake Ontario. Jerry D. Hill. August 1971 (COM-72-00959)
NWS ER 44 Forecasting Precipitation Type at Greer, South Carolina. John C. Purvis. December 1971 (COM-72-10332)
NWS ER 45 Forecasting Type of Precipitation. Stanley E. Wasserman. January 1972 (COM-72-10316)
NWS ER 46 An Objective Method of Forecasting Summertime Thunderstorms. John F. Townsend and Russell J. Younkin. May 1972 (COM-72-10765)
NWS ER 47 An Objective Method of Preparing Cloud Cover Forecasts. James R. Sims. August 1972 (COM-72-11382)
NWS ER 48 Accuracy of Automated Temperature Forecasts for Philadelphia as Related to Sky Condition and Wind Direction. Robert B. Wassall.
NWS ER 49 A Procedure for Improving National Meteorologiacal Center Objective Precipitation Forecasts. Joseph A. Ronco, Jr. November 1972 (COM-73-10132)
NWS ER 50 PEATMOS Probability of Precipitation Forecasts as an Aid in Predicting Precipitation Amounts. Stanley E. Wasserman. December 1972 (COM-73-10243)
NWS ER 51 Frequency and Intensity of Freezing Rain/Drizzle in Ohio. Marvin E. Miller. February 1973 (C0M-73-10570)
NWS ER 52 Forecast and Warning Utilization of Radar Remote Facsimile Data. Robert E. Hamilton. July 1973 (COM-73-11275)
NWS ER 53 Summary of 1969 and 1970 Public Severe Thunderstorm and Tornado Watches Within the National Weather Service, Eastern Region. Marvin E. Miller and Lewis H. Ramey. October 1973 (COM-74-10160)
NWS ER 54 A Procedure for Improving National Meteorological Center Objective Precipitation Forecasts - Winter Season. Joseph A. Ronco, Jr. November 1973 A Procedure for Improving National Meteorological Center Objective Precipitation Forecasts - Winter Season. Joseph
(COM-74-10200)
(COM-74-10036)
$\begin{array}{llll}\text { NWS ER } & 55 & \text { Cause and Prediction of Beach Erosion. Stanley E. Wasserman ad } \\ \text { NWS ER } & 56 & \text { Biometeorological Factors Affecting the Development and Spread of Plant Diseases. V. J. Valli. July 1974 (COM-74-11625/AS) }\end{array}$
NWS ER 57 Heayy Fall and Winter Rain In The Carolina Mountains. David B. Gilhousen. October 1974 (COM-74-11761/AS)
NW
NWS ER 58 An Analysis of Forecasters' Propensities In Maximum/Minimum Temperature Forecasts. I. Randy Racer. November 1974 (COM-75-10063/AS)
(Continued On Inside Rear Cover)

NOAA Technical Memorandum NWS ER-65

A PROCEDURE FOR SPRAYING SPRUCE BUDWORMS
IN MAINE DURING STABLE WIND CONDITIONS

Monte Glovinsky
WSFO Boston, Mass.

Scientific Services Division Eastern Region Headquarters May 1980

\qquad

A PROCEDURE FOR SPRAYING SPRUEE BUDWORMS
 IN MAINE DURING STABLE WIND CONDITIONS

Monte Glovinsky
WSFO Boston, Massachusetts

Abstract

A technique is developed to forecast winds and apply them for spraying "in-wind" beyond the morning inversion period but before adverse thermal activity begins. Nomograms are constructed which determine drift distances of all drop size categories within the spray cloud for a given pressure gradient; wind to block direction component, and aircraft type: This gives an estimate of the proper offset of planned flight' runs and of spray deposition.

1. INTRODUCTION

A sudden increase in spruce budworm population from 1971 to 1979 has posed an extremely serious threat to one of Maine's most valuable resources, its spruce and fir trees. These insects are most destructive in their larval stages, when they consume the needles of the trees. Repeated feedings cause the trees to die. The spraying strategy is simply to deposit a poisonous chemical on the needles during the feeding stages (normally a two-week span within the period between late May and mid-June).

During selected years since 1954, the spraying for spruce budworms in Maine was confined to the fair weather inversion periods of the daylight hours (usually between 5 and 8 a.m.g.and 6 and 8 p.mo). The very stable and calm. wind conditions allowed for fairly adcurate chemical deposition of spray droplets, especially those larger than 150 microns in diameter. However, by not trying to spray "in-wind". during those stable* hours beyond the morning inversion, available spray time was severely limited..: This was especially true when the relatively short feeding period coincided with a string of early mornings plagued with fog and low clouds or when inversion frequency was well below normal. Also, it has been noted, many droplets smaller than 100 microns, at times, remained suspended throughout much of the inversion period, and had drifted. far from the target area by the time the inversion had broken.

According to De Marrais, et al. (1968), aerosols released within 150 feet of the forest canopy with winds up to 12 mph , would not experience excessive scattering. The marked vertical mixing due to mechanical turbulence would "readily mix the spray cloud into the tree crowns:" Winds, however, would cause drifting of the spray. This paper describes a technique to forecast drift level winds and determines the spray drift so flight lines may be offset properly.
*Spraying when the atmosphere is neutral or unstable subjects the spray to adverse thermal activity causing unacceptable deposition.

a

2. DRIFT WIND LEVELS

Wind forecasts are applied to two levels between the release height and tree tops.

The first level, level 1, is halfway between the aircraft and the botton of the downward propet ler and:wing tip vortex system. According to Jones (1970), photographs of spray clouds show that spray droplets are quickly swept into this vortex system and sink at a relatively rapid rate. The descent stops when the centers of the individual vortices within the systen reach to about $1 / 2$ wing span above the surface. See Figure 1.

The second level, level 2, is halfway between the bottom of the vortex system and the tree tops.

Therefore: Level $1=h+\frac{b}{2}+\frac{\left(H-\frac{b}{2}\right)}{2}=h+\frac{H}{2}+\frac{b}{4}$ (AGL)*
*Above Ground Level
and Level $2=h+\frac{b}{4}$ (AGL)
where: $h=$ effective height of tree canopy
$H=$ flight altitude above tree canopy
$b=$ wing span of aircraft
The development described is for C54 aircraft using SEVIN 4 oil. This was the combination for about 80% of the spraying in Maine in 1979 (a 3-million-acre project). The same procedure is followed to prepare working models for the other aircraft (and SEVIN 4 oil) used in Maine budworm spraying. The recommended flight altitudes are 150 feet above the tree tops during crosswind component situations (winds blowing within 45 degrees of perpendicular to the preplanned fight lines) and 250 feet above the trees during "along-wind" periods (winds within 45 degrees of parallel to the flight lines): The 100-foot increase in altitude for along-wind conditions results in a corresponding increase of horizontal deposition. This compensates for the lack of swath coverage observed during inversions with planes operating at 150 feet above the trees.

The average tree height was assumed to be 70 feet, and the wing span for C54 is 114 feet. So, for C54 operations, solving equations (1) and (2):

During crosswind periods (subscript C):
Level ${ }^{1} \mathrm{C} \sim 175$ feet AGL
and Level ${ }^{2}$ C ~ 100 feet AGL
During along-wind periods (subscript A):
Level $1_{A} \sim 225$ feet AGL
and Level $2_{A}=$ Level $2_{C} \sim 100$ feet AGL

Figure 1. Descent and spreading of wing-tip vorticies from the aircraft in still air and in a light crosswind. The symbol b stands for aircraft wingspan.
(From Boyle,Barry et al 1975)

3. GEOSTROPHIC WIND

It was determined that wind forecasts should be expressed as a percentage of the geostrophic: wind.: Individuallanemometer site readings not only pose the problems of localizedseffects; butalso do not aormally give average wind conditions for large enough areas (the average spray block in Maine, in 1979, was about 30,000 acres.). Eurthemore, a better average of wind variation with time can be determined:- (This is also true for wind components within the National Fire Danger Rating System.)

The pressure gradient (PG), can be expressed by:

$$
P G=\frac{\Delta \mathrm{p}}{\mathrm{~L}}
$$

Where $\Delta \mathrm{p}$ is the pressure difference in millibars between 2 points, one on each side of the spray: area on an axis normal to the general wind flow, and, L is the distance between the two points in degrees latitude. These values can be readily determined from carefully analyzed weather maps using any map scale. Conversion of pressure gradient in these units to geostrophic wind (Vg) in miles per hour is shown in the first columns of Table 1. These values were developed using the graphical aids by N. A. Riley and presented by Byers (1937).

Table 1

Mb/Deg Lat	$: \mathrm{Vg}(\mathrm{MPH})$	$\frac{50 \%(\mathrm{Vg})}{\mathrm{VT}}$		$\frac{43 \%(\mathrm{Vg})}{\mathrm{MPH} \frac{V 2 A}{F t} / \operatorname{Sec}}$		$\frac{\frac{53 \%(\mathrm{Vg})}{\mathrm{VIA}}}{\mathrm{Ft} . / \mathrm{Sec}} .$	
- 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.1	1.1	0.6	1.3	0.5	0.7	0.6	0.9
0.2	3.6	1.7	2.8	1.5	2.1	1.8	2.6
0.3	5.0	2.5	3.7	2.2	3.2	2.6	3.9
0.4	6.7	3.4	5.0	2.9	$\therefore 4.2$	3.6	5.2
0.5	8.4	4.2	6.2	3.6	5.2	4.4	6.5
0.6	-10.1	5.1	7.4	4.3	6.4	5.3	7.9
0.7	11.8	5.9	8.7	5.1	7.5	6.2	$9 . ?$
0.8	13.4	6.7	9.9	5.8	8.5	7.1	10.4
0.9	15.1	7.6	11.2	6.5	9.5	8.0	11.8
1.0	16.8	8.4	12.4	7.2	10.6	8.9	13.1
-1.1	18.5	9.3	13.6	8.0	11.7	9.8	14.4
1.2	20.1	10.1	14.8	8.6	12.7	10.6	75.7
1.3	21.8	10.9	16.0	9.4	13.8	11.5	17.0
1.4	23.5	11.8	17.3	10.1	14.9	12.5	18.3
1.5	25.2	12.6	18.5	10.8	15.9	13.4	19.6
1.6	26.8	13.4	19.7	11.5	16.9	14.2	20.9
1.7	- 28.5	14.3	21.0	12.3	18.0	15.1	22.2
1.8	30.2	15.1	22.2	13.0	19.1	16.0	23.5
1.9	31.9	16.0	23.5	18.7	20.1	16.9	24.9
2.0	33.6	16.8	24.7	14.5	21.2	17.8	26.2

Conversion of pressure gradient (P.G.) to geostrophic wind (MPH) and to drift level winds (MPH) and Ft./Sec.).
]

J
\qquad

4. DRIFT LEVEL WINDS

A generally accepted way to express the variation of wind speed with height is the general power law (as presented by Touma (1977):

$$
\begin{equation*}
\frac{v_{u}}{v_{L}}=\left(\frac{z_{u}}{z_{L}}\right)^{p} \tag{3}
\end{equation*}
$$

where: $V_{u}=$ wind speed at upper level Z_{u}
$V_{L}=$ wind speed at lower level Z_{L}
$\mathrm{P}=$ expotential parameter $(0 \leq \mathrm{P} \leq 1)$
According to Touma the values of P for hilly terrain similar to Northern Maine at various stability classes (as defined by Pasquill, 1961) are shown in Table 2.

Table 2

Stability Class	\underline{P}
A Very unstable	.109
B Moderately unstable	.085
C Slightly unstable	.078
D Neutral	.116
E Slightly stable	.261
F Moderately stable	.426
G Very stable	.516

Values of P for stability classes from Michigan data 1975-1976 by Touma.

By assuming 2500 feet (AGL) is about the level of the geostrophic wind, Vg , (Pettersen 1958), we can find an expression for the winds at the various lower levels. Substituting equation (3) for the C54 operation:

$$
\begin{align*}
& { }^{V 1} 1_{C}=\frac{V g}{(14.3)} \text { p at } 175 \text { feet AGL } \tag{4}\\
& { }^{V 2}{ }_{(C * A)}=\frac{V g}{(25)} \text { at } 100 \text { feet AGL } \tag{5}\\
& V 1_{A}=\frac{V g}{(11.1)} \text { p at } 225 \text { feet AGL } \tag{6}
\end{align*}
$$

where: $\left.{ }^{V}\right]_{C}=$ wind at level ${ }^{1} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{V} 2_{(C * A)}=\text { wind at level } 2(\mathrm{C} \text { or } \mathrm{A}) \\
& \mathrm{V} 1_{\mathrm{A}}=\text { wind at level } 1_{\mathrm{A}}
\end{aligned}
$$

\because

$i j$

$$
\ddot{x}
$$

$$
\begin{aligned}
& \therefore \because \because i \quad \therefore \quad \because \quad \forall \quad \therefore \quad \therefore \quad \therefore
\end{aligned}
$$

In Northern Maine, during the spray season, stability class E (p = .261) best describes the conditions beyond the morning inversion period and before adverse thermal activity takes place.

Solving equations 4, 5, and 6 using $p=.261$ we get:

$$
\begin{aligned}
& V 1_{C}=50 \% V g \\
& V 2^{(C * A)}=43 \% \\
& V 1_{A}=53 \% V g
\end{aligned}
$$

These percentages were used to complete the last columns of Table 1.
Note: Since all spray aircraft are àssigned the same flight altitudes, the percent of geostrophic wind used at the other aircraft drift levels was the same as the C54 operation: Separate computations were considered unnecessary when also considering the state of the art and the degree of accuracy associated with some of the basic assumptions.

5. DRIFT DISTANCES

In a dispersion model developed by Cramer, et al., and described by Dumbald, Rafferty and Cramer (1976); the axis of the spray cloud is assumed to intersect the ground at a downwind distance, D, proportional to the product of the effective release height, Z, and the mean cloud transport wind, V, divided by the settling velocity, K. Therefore:

$$
\begin{equation*}
D=\frac{Z \bar{V}}{K} \tag{7}
\end{equation*}
$$

We substitute the vertical fall distance for Z for each of the two settling systems between the aircraft height and the tree tops and get an expression for the drift distance of each system. Adding the two distances gives the total drift.
A. Drift of the Vortex System

That portion of the total drift covered during the descent of the vortex system can be expressed (from equation 7) by:

$$
\begin{equation*}
D 1=\frac{\left(H-\frac{b}{2}\right)}{R} V 1 \tag{8}
\end{equation*}
$$

where H is aircraft height above trees
b is wing span of aircraft
V 1 is average wind speed of this system
R is sink rate of the vortex system
For C54 operation from equation 8:

$$
\begin{equation*}
D T_{C}=\frac{93 V 1_{C}}{R} \quad(H=150 \mathrm{ft} . b=114 \mathrm{ft} . \ldots \text { crosswind }) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
D 1_{A}=\frac{193 \mathrm{~V} 1_{A}}{R} \quad(H=250 \mathrm{ft} . \mathrm{b}=114 \mathrm{ft} . \ldots \text { along wind }) \tag{10}
\end{equation*}
$$

Jones, after Prandtl and Tietjens (1934) estimate R, the sink rate as:

$$
\begin{equation*}
R=\frac{8 \mathrm{gW}}{\pi^{3} \rho b^{2} S} \tag{11}
\end{equation*}
$$

where: $g=$ gravitational acceleration ($9.8 \mathrm{~m} / \mathrm{sec} .^{2}$)
$W=$ weight of aircraft (grams)
$\rho=$ air density ($1207.4 \mathrm{gm} / \mathrm{m}^{3}$)
$S=$ aircraft speed ($\mathrm{m} / \mathrm{sec}$.)
$\mathrm{b}=$ wing span (meters)
Table 3 shows the specifications of the various aircraft used for the Maine spraying operations.

Table 3
AIRCRAFT WEIGHT (W), WING SPAN (b), SINK RATE (R), SPEED (S) AND SWATH (SW)

Aircraft	(grams)	b (meters)	S $(\mathrm{m} / \mathrm{sec})$.	R^{*} $(\mathrm{~m} / \mathrm{sec})$.	SW (meters)
C54	2.163604×10^{7}	34.62	80.46	.47	366
PV-2	1.121832×10	23.77	80.46	.56	183
TBM	6.824638×10^{6}	16.46	73.76	.72	$122 \ldots$

(*solving Eq. 11)
For C54, from equation (17):
$R=.47 \mathrm{~m} / \mathrm{sec}$. or $1.55 \mathrm{ft} . / \mathrm{sec}$.
and the drift distance of the vortex system in feet--for crosswind period is:
${ }^{\mathrm{D}} \mathrm{C}_{\mathrm{C}}=60\left(\mathrm{~V} 1_{\mathrm{C}}\right)$ (when $\mathrm{V} 1_{\mathrm{C}}$ is in $\mathrm{ft} . / \mathrm{sec}$)
and for along-wind periods:
$D 1_{A}=125(\mathrm{V1} A)$
(from 9 and 10, respectively)
B. Drift of the Lower System

That portion of the drift distance covered between the bottom of the vortex system and the tree tops can be expressed by:

$$
\begin{equation*}
D 2=\frac{\frac{b}{2}(V 2)}{G_{j}} \tag{12}
\end{equation*}
$$


```
where b = wing span
    V2 = average wind of this stratum
    Gi-= gravitational settling velocity of each drop size category
```

In a dispersion model developed by Dumbald and Bjorklin (1977), values of gravitational settling velocities, G_{i}, and fraction of total source, F_{i}, for 13 to 15 drop size categories were estimated for the various aircraft (with SEVIN 4 oil) used in Maine. These are shown in Table 4.

The term $\left(\frac{\overline{2}}{\frac{G}{G}}\right.$)in equation 12 is the time it takes for each drop size category to descend through the lower system. This is referred to as ri in Table 4.* It is in seconds when G_{j} is in $f t . / s e c ., b$ is in feet, and $V 2$ is $i n f t . / s e c$. Then: $\quad \mathrm{D} 2=\mathrm{T}_{\mathrm{j}} \mathrm{V} 2$

Table 4

Drop Size Cate- gory i	\bar{u}	$\mathrm{G}_{\boldsymbol{i}}{ }^{\text {C5 }}$	F_{i}	${ }^{1} \mathbf{i}$	\bar{u}	$G_{i}{ }^{\text {PV }}$	-2 ${ }_{\text {F }}$	τ_{j}	u	$G_{i}{ }^{\text {TB }}$	$\mathrm{F}_{\mathbf{i}}$		$\|$Drop Size Cate- gory i
1	231	2.709	. 008	21	277	3.16	. 016	12	221	2.50	. 02	11	1
2	220	2.567	. 006	22	252	2.86	. 009	14	178	1.86	. 03	15	2
3	207	2.412	. 010	23	231	2.61	. 010	15	152	1.54	. 05	18	3
4	194	2.211	. 010	25	220	2.48	. 022	16	139	1.28	. 10	21	4
5	180	1.977	. 035	28	207	2.33	. 048	17	123	1.05	. 10	26	5
6	166	1.742	. 075	32	194	2.12	. 051	18	112	. 90	. 10	30	6
7	151	1.521	. 113	38	180	1.90	. 093	21	99	. 77	. 20	35	7
8	135	1.277	. 165	45	166	1.67	. 084	23	86	. 66	. 10	41	8
9	117	1.010	. 176	57	152	1.46	. 121	27	77	. 57	. 10	47	9
10	93	. 789	. 204	72	135	1.22	. 170	32	66	. 42	. 10	64	10
11	76	. 591	. 153	96	117	. 97	. 131	40	55	. 29	. 05	93	11
12	51	. 257	. 040	222	98	. 76	. 126	51	46	. 20	. 03	135	12
13	21	. 046	. 005	1239	77	. 57	. 084	68	31	.10	. 02	270	13
14					51	. 25	. 035	156					
15		,			30	.10	. 001	390					

where:
\bar{u} is mean drop diameter in each $i^{\text {th }}$ category (um)
G_{j} is gravitational settling velocity in each i th category (ft./sec.)
F_{i} is fraction of total source in each i th category
τ_{i} is time of suspension of each i th category
C. Total Drift

Adding the drift of the vortex system (found in a) to the lower system (found in b) gives the total drift. For C54 operation:

$$
D_{C}=D 1_{C}+D 2=60 V 1_{C}+\tau_{i} V 2 \text { (crosswind) }
$$

*These τ_{i} values are in good agreement with computations by Van Liere and Barry (1973) for particles of specific gravity 1.0 falling 50 feet in still air at an air temperature of 23 degrees celsius.

$$
\begin{array}{r}
16= \\
3 \%=
\end{array}
$$

- E

$$
\because
$$

$$
\therefore \quad \therefore \quad
$$

כ
 \qquad
and

$$
D_{A}=D 1_{A}+D 2=125 \mathrm{~V} 1_{A}+\tau_{i} V 2 \text { (along-wind) }
$$

and since: ${ }^{\mathrm{V}} \mathrm{C}_{\mathrm{C}}=.50 \mathrm{Vg} ; \mathrm{V1}_{\mathrm{A}}=.53 \mathrm{Vg}$ and $\mathrm{V} 2=.43 \mathrm{Vg}$, then:

$$
\mathrm{V} 2=.86 \mathrm{~V} 1_{\mathrm{C}}=.81 \mathrm{V1} 1_{\mathrm{A}}
$$

For C54:

$$
\begin{align*}
& D_{C}^{\prime}=V 1_{C}\left(60+.86 \tau_{i}\right) \ldots \text { total crosswind drift... } \tag{13}\\
& D_{A}=V 1_{A}\left(125+.81 \tau_{i}\right) \ldots \text { total along-wind draft... } \tag{14}
\end{align*}
$$

For PV2:

$$
\begin{align*}
& D_{C}=V I_{C}\left(61+.86 \tau_{i}\right) \tag{15}\\
& D_{A}=V I_{A}\left(115+.81 \tau_{i}\right) \tag{16}
\end{align*}
$$

For TBM:

$$
\begin{align*}
& D_{C}=V 1_{C}\left(52+.86 \tau_{i}\right) \tag{17}\\
& D_{A}=V 1_{A}\left(94+.81 \tau_{i}\right) \tag{18}
\end{align*}
$$

Solving equations 13 through 18 using the data in Table 4, 2 nomograms are constructed for each aircraft (Figures 2, 3, 4, 5, 6, and 7) that show drift distances of each drop size category for crosswind and along-wind components as a function of pressure gradient (and corresponding $V 1_{C},{ }^{\mathrm{V}}{ }_{\mathrm{A}}$ combination). Although these nomograms are based on the mathematical models of Dumbald and Bjorklund, the C54 charts are in good agreement with the observed data of Boyle, Barry, et a1. (1975) using the similar DC-7B aircraft.

6. OFFSET PROCEDURE

With a given pressure gradient and wind to block component, an estimate of the downwind distance of each drop size category can be determined from either of the two nomograms of each aircraft. The offset is applied to the preplanned flight lines to determine the actual flight. Normally for crosswind periods, the offset distances will correspond to the center lines shown on the nomograms of Figures 2, 4, and 6. These are $1 / 2$ swath width downwind of the largest diameter drop size category.

Each end point of a preplanned flight line is offset into the wind at the indicated distance. The variation of spray deposition across the entire swath is also indicated (including the degree of overlap or spillage into unplanned areas). The maximum deposition category (maximum F_{i}) is the heavy line on each crosswind nomogram. The deposition spectrum across the swath lies between the front edge and end lines. The dashed lines on the crosswind charts are $\sqrt{2} \times$ swath and $\sqrt{2} x$ swath downwind from the front edge 1 ine.

These represent the center and end lines of the spectrum of deposition across the swath when winds are at a 45-degree angle to the spray block. Offset distances for winds intersecting the blocks between 90 and 45 degrees can be interpolated between these two center lines. Of course, when winds are at 45 degrees to the block, gaps in coverage, as well as overspillage must be realized, as shown in Figure 8.

Figure 8

OR

These situations may require rescheduling or reassignment of operations.
The crosswind nomograms can also indicate a deficiency of deposition if winds are too light. For instance, if drop sizes of less than 50 microns are regarded as ineffective, wind speeds at the drift level of at least $4.1 / 2 \mathrm{mph}$ would be needed to cover the entire block with the desirable deposition (if C54's are operating while winds are crossing the blocks at a 90-degree angle).

The offset for along wind spraying would correspond to the distance of the first (largest) size category when the blocks are downwind, and to the smallest effect size category when the blocks are upwind. To offset the shutoff points in these cases, the distances would be reverse, i.e., the smallest category for downwind flight runs and the largest for upwind runs. The path of the aircraft during along wind periods would be on the same lines of the preplanned lines, putting the maximum deposition through the center of the blocks.

7. SUMMARY AND CONCLUSION

Since 1954, spraying for spruce budworms in Maine was confined to the fair weather inversion periods of the daylight hours. This often severely limited the time available for spraying so a procedure is developed whereby spraying might continue during the stable hours beyond the morning inversion. It allows for spraying in-wind by determining spray drift and, therefore, proper offsetting of flight lines.

To compute the total spray drift, the drift of two layers between the aircraft and tree tops are tallied. The upper layer covers the vertical distance of the downward propeller and wing tip vortex system. The lower part comprises the remaining space to the tree tops and has been shown to be equal to about $1 / 2$ wing span in size。

The top of the upper level, the aircraft altitude, is dependent upon the wind to block directional component. During crosswind periods aircraft are assigned an altitude of 150 feet above the tree tops. During. along-wind periods, 250 feet above the trees is the recommended altitude. The winds at the midpoint of each segment (drift level winds) are developed from pressure gradient and the corresponding percentages of geostrophic wind.

The drift of the upper segment is a function of:

1. Its vertical distance
2. Its drift level wind, and
3. The reciprocal of the sink rate of the vortex system.

The drift of the lower segment is a function of:

1. Its vertical distance ($1 / 2$ wing span in size)
2. Its drift level wind, and
3. The reciprocal of the gravitational settling velocity of each drop size category within the spray cloud.

This results in a pattern of spray deposition in which smaller droplets are carried farther downwind than larger ones.

Using nomograms, for a given aircraft, wind to block component, and pressure gradient, one can readily obtain the drift distances of all drop size categories and, therefore, an estimate of spray deposition and proper offset.

ACKNOWLEDGMENTS

I would like to thank. Joe Rogash and Art Francis for their assistance in the computations solving the drift distance formulas.

A special thanks is due Rod C. Winslow for the high quality of drafting that produced the six nomograms of Figures 2 through 7.

REFERENCES

BOYLE, P. G., J. W. Barry, et al., Nov. 1975: - "DC-7B Aircraft Spray System for Large Area Insect Control." U.S. Army Dugway Proving Ground, Proj. \#2-C0-153-000-029.

BYERS, R. H., 1937: General Meteorology Appendix II, Graphical Aids in Analysis and Forecasting:

CRAMER, H. E., et al., 1972: Development of: Dosage Models and Concepts. Final report under contract DAA D09-67-C 0020 (R). DTC-TR-72-609, Fort Doughlas, Utah.

DE MARRAIS, G. A., G. L. Downing, and H. E. Meyer, 1968: "Transport and Diffusion of an Aerosolized Insecticide in Mountainous Terrain." NOAA Technical Memorandum ERL ARL-6, pp. 23-24.

DUMBALD, R. K. and J. R. Bjorklund, 1977: "Deposition Profile Calculations for the State of Maine 1977 Spray Program."

DUMBALD, R. K., J. E. Rafferty, and H. E. Cramer, 1976: "DispersionDeposition from Aerial Spray ReTeases." Third Symposium on Atmospheric Turbulence, Diffusion and Air Quality, October 26-29, Raleigh, N.C. (AMS).

JONES, D. N., 1970: "Introduction to Jet Engine Exhaust and Trailing Vortex Wakes." Technical Report No. 226, U.S. Air Force AWS (MAC).

PASQUILL, F., 1961: "The Estimation of the Dispersion of Windborne Materia1." Metrorol Mag., 90,1063, pp. 33-49.

PETTERSEN, S., 1958: Introduction to Meteorology, pg. 157.
PRANDTL, L. and 0. G. Tietjens, 1934: Fundamentalis of Hydro and Aeromechanics Engineering Societies Monograjhs. Dover Publications, Inc., New York, N.Y., 1957.

TOUMA, J. S., 1977: "Dependence of Wind Profile Power Law on Stability for Various Locations." Journal of the Air Pollution Control Association, pp. 863-866.

VAN LIERE, J. and J. W. Barry, 1973: DTC Study 71-152, Phase II, "Canopy Penetration of Aerially Disseminated Chemical Materials." (Final Report), pp. 2-33.

REFERENCES

BOYLE, P. G., J. W. Barry, et al., Nov. 1975: - "DC-7B Aircraft Spray System for Large Area Insect Controt." U.S. Army Dugway Proving Ground, Proj. \#2-C0-153-000-029.

BYERS, R. H., 1937: General Meteorology: Appendix II, Graphical Aids in Analysis and Forecasting:

CRAMER, H. E., et al., 1972: Development of: Dosage Models and Concepts. Final report under contract DAA D09-67-C 0020 (R). DTC-TR-72-609, Fort Doughlas, Utah.

DE MARRAIS, G. A., G. L. Downing, and H. E. Meyer, 1968: "Transport and Diffusion of an Aerosolized Insecticide in Mountainous Terrain." NOAA Technical Memorandum ERL ARL-6, pp. 23-24.

DUMBALD, R. K. and J. R. Bjork7und, 1977: "Deposition Profile Calculations for the State of Maine 1977 Spray Program."

DUMBALD, R. K., J. E. Rafferty, and H. E. Cramer, 1976: "DispersionDeposition from Aerial Spray Releases." Third Symposium on Atmospheric Turbulence, Diffusion and Air Qual'ity, October 26-29, Raleigh, N.C. (AMS).

JONES, D. N., 1970: "Introduction to Jet Engine Exhaust and Trailing Vortex Wakes." Technical Report No. 226, U.S. Air Force AWS (MAC).

PASQUILL, F., 1961: "The Estimation of the Dispersion of Windborne Material." Metrorol Mag., 90,1063, pp. 33-49.

PETTERSEN, S., 1958: Introduction to Meteorology, pg. 157.
PRANDTL, L. and 0. G. Tietjens, 1934: Fundamentals of Hydro and Aeromechanics Engineering Societies Monographs. Dover Publications, Inc., New York, N.Y., 1957.

TOUMA, J. S., 1977: "Dependence of Wind Profile Power Law on Stability for Various Locations." Journal of the Air Pollution Control Association, pp. 863-866.

VAN LIERE, J. and J. W. Barry, 1973: DTC Study 71-152, Phase II, "Canopy Penetration of Aerially Disseminated Chemical Materials." (Final Report), pp. 2-33.

1.$)$

0
(atas:
\square

FIGURE 5
PV2 ALONG WIND

$.7$

